1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
| import numpy as np
# 영행렬 만들기
z = np.zeros([3,3])
z
: array([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
# 단위행렬(항등행렬) 만들기
y = np.eye(3)
y
: array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
# 전치행렬 만들기
t = np.array([[1,2,3],[4,5,6],[7,8,9]])
t.T
: array([[1, 4, 7],
[2, 5, 8],
[3, 6, 9]])
# 일행렬 만들기
o = np.ones((5,4))
o
: array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
# 원하는 숫자로 행렬 채우기
f = np.full((3,3),3)
f
: array([[3, 3, 3],
[3, 3, 3],
[3, 3, 3]])
# 원하는 행렬 shape 복사해서 일행렬 만들기
l = np.ones_like(f)
l
: array([[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
# 대각행렬 만들기
np.diagonal([[1,2],[3,4]])
: array([1, 4])
# 상부 삼각행렬
np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
: array([[1, 2, 3],
[0, 5, 6],
[0, 0, 9],
[0, 0, 0]])
# 하부 삼각행렬
np.tri(4)
: array([[1., 0., 0., 0.],
[1., 1., 0., 0.],
[1., 1., 1., 0.],
[1., 1., 1., 1.]])
np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
: array([[ 0, 0, 0],
[ 4, 0, 0],
[ 7, 8, 0],
[10, 11, 12]])
np.linspace(0,30)
: array([ 0. , 0.6122449 , 1.2244898 , 1.83673469, 2.44897959,
3.06122449, 3.67346939, 4.28571429, 4.89795918, 5.51020408,
6.12244898, 6.73469388, 7.34693878, 7.95918367, 8.57142857,
9.18367347, 9.79591837, 10.40816327, 11.02040816, 11.63265306,
12.24489796, 12.85714286, 13.46938776, 14.08163265, 14.69387755,
15.30612245, 15.91836735, 16.53061224, 17.14285714, 17.75510204,
18.36734694, 18.97959184, 19.59183673, 20.20408163, 20.81632653,
21.42857143, 22.04081633, 22.65306122, 23.26530612, 23.87755102,
24.48979592, 25.10204082, 25.71428571, 26.32653061, 26.93877551,
27.55102041, 28.16326531, 28.7755102 , 29.3877551 , 30. ])
np.logspace(1,100)
: array([1.00000000e+001, 1.04811313e+003, 1.09854114e+005, 1.15139540e+007,
1.20679264e+009, 1.26485522e+011, 1.32571137e+013, 1.38949549e+015,
1.45634848e+017, 1.52641797e+019, 1.59985872e+021, 1.67683294e+023,
1.75751062e+025, 1.84206997e+027, 1.93069773e+029, 2.02358965e+031,
2.12095089e+033, 2.22299648e+035, 2.32995181e+037, 2.44205309e+039,
2.55954792e+041, 2.68269580e+043, 2.81176870e+045, 2.94705170e+047,
3.08884360e+049, 3.23745754e+051, 3.39322177e+053, 3.55648031e+055,
3.72759372e+057, 3.90693994e+059, 4.09491506e+061, 4.29193426e+063,
4.49843267e+065, 4.71486636e+067, 4.94171336e+069, 5.17947468e+071,
5.42867544e+073, 5.68986603e+075, 5.96362332e+077, 6.25055193e+079,
6.55128557e+081, 6.86648845e+083, 7.19685673e+085, 7.54312006e+087,
7.90604321e+089, 8.28642773e+091, 8.68511374e+093, 9.10298178e+095,
9.54095476e+097, 1.00000000e+100])
# Random
np.empty((3,3))
: array([[0.00000000e+000, 0.00000000e+000, 0.00000000e+000],
[0.00000000e+000, 0.00000000e+000, 4.36754031e-321],
[8.70018274e-313, 6.79038653e-313, 1.24610994e-306]])
|